z-logo
open-access-imgOpen Access
Modulation of a Small Two-Domain Lipid Vesicle by Linactants
Author(s) -
Zhenlong Li,
Alemayehu A. Gorfe
Publication year - 2014
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp5042525
Subject(s) - vesicle , dissipative particle dynamics , membrane , curvature , lipid bilayer , membrane curvature , biophysics , biological membrane , molecular dynamics , chemistry , biological system , materials science , chemical physics , biology , biochemistry , mathematics , computational chemistry , geometry , polymer , organic chemistry
Linactants, molecules that preferentially localize at the boundary of lipid membrane domains, are attracting considerable attention in recent years due to the recognition that they might regulate lipid-phase separation and thereby modulate membrane morphology. Recent studies have also shown that clustering of some line active agents enhances their ability to modulate membrane curvature. However, the molecular origin of this phenomenon, and the degree to which it impacts biological membranes, remains poorly understood. In this work, we have investigated how linactants induce shape change in multidomain small unilamallar vesicles (SUVs) using extensive dissipative particle dynamics simulations. The linactant was modeled as a two-tailed hybrid lipid with the two tails differing in preference for different lipid domains. We found that addition of a small amount of linactants (∼1%) to a two-domain vesicle leads to substantial reduction in the line tension and neck curvature at the domain boundary. Using cross-linking as a surrogate for clustering, we further show that linactant clusters substantially enhance the boundary preference and therefore the reduction in neck curvature. Moreover, on the basis of analyses of the corresponding changes in the membrane energetics, we highlight how linactants might stabilize nanoscale domains. These results have important implications for the potential existence and physical explanations of nanosized domains in biological membranes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom