z-logo
open-access-imgOpen Access
Interaction Forces, Heteroaggregation, and Deposition Involving Charged Colloidal Particles
Author(s) -
Gregor Trefalt,
F. Javier Montes RuizCabello,
Michal Borkovec
Publication year - 2014
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp503564p
Subject(s) - dlvo theory , charged particle , poisson–boltzmann equation , chemistry , valence (chemistry) , colloid , chemical physics , electrolyte , ion , coagulation , deposition (geology) , electrostatics , surface charge , electrode , psychology , organic chemistry , psychiatry , paleontology , sediment , biology
Force profiles as well as aggregation and deposition rates are studied for asymmetrically charged particles and surfaces in aqueous electrolytes theoretically. Interactions are calculated within the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory, whereby the electrostatic part is modeled at Poisson-Boltzmann (PB) level. Unequally charged surfaces are examined, from the symmetric system, where both surfaces are equally charged, to fully asymmetric systems, where the surfaces are oppositely charged. Charged-neutral systems, where one surface is charged and the other is neutral, emerge as an essential scenario. In this case, the choice of boundary conditions used for solving the PB equation is crucial, whereby constant charge and constant potential boundary conditions lead to either fully repulsive or fully attractive forces. Consequently, charge regulation has a major influence on particle aggregation and deposition rates too. In the charge-neutral case, substantial shifts in the critical coagulation concentration (CCC) are observed when the regulation properties are changed. In the presence of multivalent ions, these systems behave similarly to the symmetrically charged ones. The CCC decreases with the square of the valence in weakly charged systems, while unrealistically high charge densities are needed to recover the classical Schulze-Hardy limit, which predicts a sixth power dependence on valence.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom