Multiphoton Photochemistry of Red Fluorescent Proteins in Solution and Live Cells
Author(s) -
Mikhail Drobizhev,
Caleb Stoltzfus,
Igor A. Topol,
Jack Collins,
Geoffrey Wicks,
Alexander Mikhaylov,
Lauren M. Barnett,
Thomas E. Hughes,
Aleksander Rebane
Publication year - 2014
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp502477c
Subject(s) - chromophore , photochemistry , fluorescence , two photon excitation microscopy , femtosecond , chemistry , green fluorescent protein , autofluorescence , excited state , absorption (acoustics) , photobleaching , biophysics , laser , materials science , optics , atomic physics , biochemistry , physics , biology , composite material , gene
Genetically encoded fluorescent proteins (FPs), and biosensors based on them, provide new insights into how living cells and tissues function. Ultimately, the goal of the bioimaging community is to use these probes deep in tissues and even in entire organisms, and this will require two-photon laser scanning microscopy (TPLSM), with its greater tissue penetration, lower autofluorescence background, and minimum photodamage in the out-of-focus volume. However, the extremely high instantaneous light intensities of femtosecond pulses in the focal volume dramatically increase the probability of further stepwise resonant photon absorption, leading to highly excited, ionizable and reactive states, often resulting in fast bleaching of fluorescent proteins in TPLSM. Here, we show that the femtosecond multiphoton excitation of red FPs (DsRed2 and mFruits), both in solution and live cells, results in a chain of consecutive, partially reversible reactions, with individual rates driven by a high-order (3-5 photon) absorption. The first step of this process corresponds to a three- (DsRed2) or four-photon (mFruits) induced fast isomerization of the chromophore, yielding intermediate fluorescent forms, which then subsequently transform into nonfluorescent products. Our experimental data and model calculations are consistent with a mechanism in which ultrafast electron transfer from the chromophore to a neighboring positively charged amino acid residue triggers the first step of multiphoton chromophore transformations in DsRed2 and mFruits, consisting of decarboxylation of a nearby deprotonated glutamic acid residue.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom