z-logo
open-access-imgOpen Access
Protein Folding Dynamics in the Cell
Author(s) -
Irisbel Guzman,
Martin Gruebele
Publication year - 2014
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp501866v
Subject(s) - energy landscape , proteome , protein folding , cooperativity , biophysics , folding (dsp implementation) , chemistry , population , computational biology , nanotechnology , biology , biochemistry , materials science , demography , sociology , electrical engineering , engineering
Protein folding is a remarkably fast unimolecular reaction, spanning microseconds to hours at room temperature. Thus, free energy differences and activation barriers on the free energy landscape of proteins are rather small. This opens up the possibility of living cells modulating their protein's landscapes, providing cells another way to control the function of their proteomes after transcriptional control, translational control, and post-translational modification. In this Feature Article, we discuss advances in physicochemical studies of protein stability and folding inside living cells. We focus in particular on our studies using fast relaxation imaging (FREI). Although the effect of the cell on protein free energy landscapes is only a few kT, the strong cooperativity of many folding and binding processes allows small modulation of the energy and entropy to produce a large population modulation. Lastly, we discuss some biomolecular processes that are particularly likely to be affected by in-cell modulation of the proteome, and thus of interest for quantitative physical chemistry studies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom