One- and Two-Color Resonant Photoionization Spectroscopy of Chromium-Doped Helium Nanodroplets
Author(s) -
Markus Koch,
Andreas Kautsch,
Florian Lackner,
Wolfgang Ernst
Publication year - 2014
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/jp501285r
Subject(s) - photoionization , excited state , atomic physics , metastability , ground state , helium , photoexcitation , helium atom , atom (system on chip) , relaxation (psychology) , spectroscopy , population , ionization , chemistry , ion , physics , social psychology , psychology , demography , organic chemistry , quantum mechanics , sociology , computer science , embedded system
We investigate the photoinduced relaxation dynamics of Cr atoms embedded into superfluid helium nanodroplets. One- and two-color resonant two-photon ionization (1CR2PI and 2CR2PI, respectively) are applied to study the two strong ground state transitions z(7)P(2,3,4)° ← a(7)S3 and y(7)P(2,3,4)° ← a(7)S3. Upon photoexcitation, Cr* atoms are ejected from the droplet in various excited states, as well as paired with helium atoms as Cr*–He(n) exciplexes. For the y(7)P(2,3,4)° intermediate state, comparison of the two methods reveals that energetically lower states than previously identified are also populated. With 1CR2PI we find that the population of ejected z(5)P3° states is reduced for increasing droplet size, indicating that population is transferred preferentially to lower states during longer interaction with the droplet. In the 2CR2PI spectra we find evidence for generation of bare Cr atoms in their septet ground state (a(7)S3) and metastable quintet state (a(5)S2), which we attribute to a photoinduced fast excitation–relaxation cycle mediated by the droplet. A fraction of Cr atoms in these ground and metastable states is attached to helium atoms, as indicated by blue wings next to bare atom spectral lines. These relaxation channels provide new insight into the interaction of excited transition metal atoms with helium nanodroplets.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom