z-logo
open-access-imgOpen Access
Analysis of Trajectory Entropy for Continuous Stochastic Processes at Equilibrium
Author(s) -
Kevin Haas,
Haw Yang,
JhihWei Chu
Publication year - 2014
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp501133w
Subject(s) - statistical physics , langevin equation , trajectory , stochastic differential equation , path integral formulation , entropy (arrow of time) , physics , probability density function , langevin dynamics , stochastic process , mathematics , thermodynamics , quantum mechanics , statistics , quantum
The analytical expression for the trajectory entropy of the overdamped Langevin equation is derived via two approaches. The first route goes through the Fokker-Planck equation that governs the propagation of the conditional probability density, while the second method goes through the path integral of the Onsager-Machlup action. The agreement of these two approaches in the continuum limit underscores the equivalence between the partial differential equation and the path integral formulations for stochastic processes in the context of trajectory entropy. The values obtained using the analytical expression are also compared with those calculated with numerical solutions for arbitrary time resolutions of the trajectory. Quantitative agreement is clearly observed consistently across different models as the time interval between snapshots in the trajectories decreases. Furthermore, analysis of different scenarios illustrates how the deterministic and stochastic forces in the Langevin equation contribute to the variation in dynamics measured by the trajectory entropy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom