Hydrophobic Organic Linkers in the Self-Assembly of Small Molecule-DNA Hybrid Dimers: A Computational–Experimental Study of the Role of Linkage Direction in Product Distributions and Stabilities
Author(s) -
Ilyas Yildirim,
Ibrahim Eryazici,
SonBinh T. Nguyen,
George C. Schatz
Publication year - 2014
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp501041m
Subject(s) - linkage (software) , self assembly , molecule , product (mathematics) , dna , chemistry , materials science , computational chemistry , chemical physics , nanotechnology , organic chemistry , biochemistry , geometry , mathematics , gene
Detailed computational and experimental studies reveal the crucial role that hydrophobic interactions play in the self-assembly of small molecule-DNA hybrids (SMDHs) into cyclic nanostructures. In aqueous environments, the distribution of the cyclic structures (dimers or higher-order structures) greatly depends on how well the hydrophobic surfaces of the organic cores in these nanostructures are minimized. Specifically, when the cores are attached to the 3'-ends of the DNA component strands, they can insert into the minor groove of the duplex that forms upon self-assembly, favoring the formation of cyclic dimers. However, when the cores are attached to the 5'-ends of the DNA component strands, such insertion is hindered, leading to the formation of higher-order cyclic structures. These computational insights are supported by experimental results that show clear differences in product distributions and stabilities for a broad range of organic core-linked DNA hybrids with different linkage directions and flexibilities.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom