Automated Structure Refinement for a Protein Heterodimer Complex Using Limited EPR Spectroscopic Data and a Rigid-Body Docking Algorithm: A Three-Dimensional Model for an Ankyrin-CDB3 Complex
Author(s) -
Sarah J. Edwards,
Christopher W. Moth,
SungHoon Kim,
Suzanne Brandon,
Zheng Zhou,
Charles E. Cobb,
Eric J. Hustedt,
Albert H. Beth,
Jarrod A. Smith,
Terry P. Lybrand
Publication year - 2014
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp4099705
Subject(s) - electron paramagnetic resonance , spin label , docking (animal) , site directed spin labeling , software , computer science , cartesian coordinate system , algorithm , chemistry , biological system , crystallography , molecular physics , chemical physics , physics , nuclear magnetic resonance , mathematics , geometry , programming language , medicine , nursing , biology
We report here specialized functions incorporated recently in the rigid-body docking software toolkit TagDock to utilize electron paramagnetic resonance derived (EPR-derived) interresidue distance measurements and spin-label accessibility data. The TagDock package extensions include a custom methanethiosulfonate spin label rotamer library to enable explicit, all-atom spin-label side-chain modeling and scripts to evaluate spin-label surface accessibility. These software enhancements enable us to better utilize the biophysical data routinely available from various spin-labeling experiments. To illustrate the power and utility of these tools, we report the refinement of an ankyrin:CDB3 complex model that exhibits much improved agreement with the EPR distance measurements, compared to model structures published previously.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom