z-logo
open-access-imgOpen Access
Toward a Rational Design of Bioactive Glasses with Optimal Structural Features: Composition–Structure Correlations Unveiled by Solid-State NMR and MD Simulations
Author(s) -
Renny Mathew,
Baltzar Stevensson,
Antonio Tilocca,
Mattias Edén
Publication year - 2013
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp409652k
Subject(s) - silicate , composition (language) , nuclear magnetic resonance spectroscopy , phosphate , population , solid state nuclear magnetic resonance , molar ratio , ion , bioactive glass , spectroscopy , silicate glass , chemistry , crystallography , chemical engineering , materials science , mineralogy , stereochemistry , nuclear magnetic resonance , organic chemistry , physics , philosophy , linguistics , demography , quantum mechanics , sociology , catalysis , engineering
The physiological responses of silicate-based bioactive glasses (BGs) are known to depend critically on both the P content (n(P)) of the glass and its silicate network connectivity (N(BO)(Si)). However, while the bioactivity generally displays a nonmonotonic dependence on nP itself, recent work suggest that it is merely the net orthophosphate content that directly links to the bioactivity. We exploit molecular dynamics (MD) simulations combined with ³¹P and ²⁹Si solid-state nuclear magnetic resonance (NMR) spectroscopy to explore the quantitative relationships between N(BO)(Si), n(P), and the silicate and phosphate speciations in a series of Na₂O-CaO-SiO₂-P₂O₅ glasses spanning 2.1 ≤ N(BO)(Si) ≤ 2.9 and variable P₂O₅ contents up to 6.0 mol %. The fractional population of the orthophosphate groups remains independent of n(P) at a fixed N(BO)(Si)-value, but is reduced slightly as N(BO)(Si) increases. Nevertheless, P remains predominantly as readily released orthophosphate ions, whose content may be altered essentially independently of the network connectivity, thereby offering a route to optimize the glass bioactivity. We discuss the observed composition-structure links in relation to known composition-bioactivity correlations, and define how Na₂O-CaO-SiO₂-P₂O₅ compositions exhibiting an optimal bioactivity can be designed by simultaneously altering three key parameters: the silicate network connectivity, the (ortho)phosphate content, and the n(Na)/n(Ca) molar ratio.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom