z-logo
open-access-imgOpen Access
Mechanistic Study of 1,3-Butadiene Formation in Acetylene Hydrogenation over the Pd-Based Catalysts Using Density Functional Calculations
Author(s) -
Bo Yang,
R. Burch,
Christopher Hardacre,
P. Hu,
Philip Hughes
Publication year - 2013
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/jp408807c
Subject(s) - acetylene , catalysis , density functional theory , 1,3 butadiene , chemistry , carbon fibers , coupling (piping) , coupling reaction , photochemistry , computational chemistry , organic chemistry , materials science , metallurgy , composite number , composite material
Green oil, which leads to the deactivation of the catalysts used for the selective hydrogenation of acetylene, has long been observed but its formation mechanism is not fully understood. In this work, the formation of 1,3-butadiene, known to be the precursor of green oil, on both Pd(111) and Pd(211) surfaces is examined using density functional theory calculations. The pathways containing C2 + C2 coupling reactions as well as the corresponding hydrogenation reactions are studied in detail. Three pathways for 1,3-butadiene production, namely coupling plus hydrogenation and further hydrogenation, hydrogenation plus coupling plus hydrogenation, and a two step hydrogenation followed by coupling, are determined. By comparing the effective barriers, we identify the favored pathway on both surfaces. A general understanding toward the deactivation process of the industrial catalysts is also provided. In addition, the effects of the formation of subsurface carbon atoms as well as the Ag alloying on the 1,3-butadie...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom