z-logo
open-access-imgOpen Access
Assessment of the Performance of Long-Range-Corrected Density Functionals for Calculating the Absorption Spectra of Silver Clusters
Author(s) -
Franck Rabilloud
Publication year - 2013
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/jp3124154
Subject(s) - hybrid functional , spectral line , density functional theory , valence (chemistry) , atomic orbital , excitation , range (aeronautics) , spurious relationship , atomic physics , absorption spectroscopy , plasmon , time dependent density functional theory , valence electron , molecular physics , absorption (acoustics) , electron , chemistry , physics , materials science , quantum mechanics , computational chemistry , mathematics , optics , statistics , composite material
We assess the accuracy of several long-range-corrected (LC-) density functionals for the prediction of absorption spectra of silver clusters by time-dependent density functional theory. Several types of LC-functionals, with the exact Hartree-Fock exchange at long-range, are used: those applying the long-range correction to a standard GGA-type functional (LC-BP86, LC-ωPBE) or to a local meta-GGA functional (LC-M06L) and two global hybrid functionals (CAM-B3LYP and ωB97x). The spectra calculated with those density functionals are in good agreement with the recent accurate experimental measurements. We show that CAM-B3LYP and ωB97x are some of the most accurate functionals for evaluating the electronic excitation energies, while LC-M06L is more effective in reducing the occurrence of spurious states. The long-range correction appears to be essential in describing the absorption spectra of large clusters. The description of the plasmon-like band with LC functionals as transitions associated with excitations from s orbitals to s + p orbitals is in fairly good agreement with the classical interpretation as a collective excitation of valence s electrons.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom