Enhanced Optical Absorption Due to Symmetry Breaking in TiO2(1–x)S2x Alloys
Author(s) -
André Schleife,
Patrick Rinke,
F. Bechstedt,
Chris G. Van de Walle
Publication year - 2013
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/jp3106937
Subject(s) - absorption (acoustics) , symmetry breaking , materials science , physics , condensed matter physics , optics , particle physics
Titania (TiO2) is frequently used in photovoltaic and photocatalytic applications, despite the fact that its main optical absorption occurs only at ∼4 eV. Absorption across the band gap of 3 eV is dipole-forbidden in rutile TiO2. By means of first-principles theoretical spectroscopy calculations, we demonstrate that alloying with TiS2 introduces an absorption band into the fundamental gap of TiO2. In addition, band-edge transitions contribute to optical absorption because the S incorporation breaks the symmetry of the TiO2 lattice. Both effects lead to pronounced absorption of visible light for S concentrations as low as 1.5%
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom