z-logo
open-access-imgOpen Access
Geometry Optimizations of Open-Shell Systems with the Fragment Molecular Orbital Method
Author(s) -
Spencer R. Pruitt,
Dmitri G. Fedorov,
Mark S. Gordon
Publication year - 2012
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/jp302448z
Subject(s) - fragment (logic) , fragment molecular orbital , open shell , shell (structure) , physics , geometry , computer science , molecular orbital , materials science , algorithm , mathematics , molecule , atomic physics , quantum mechanics , composite material
The ability to perform geometry optimizations on large molecular systems is desirable for both closed- and open-shell species. In this work, the restricted open-shell Hartree-Fock (ROHF) gradients for the fragment molecular orbital (FMO) method are presented. The accuracy of the gradients is tested, and the ability of the method to reproduce adiabatic excitation energies is also investigated. Timing comparisons between the FMO method and full ab initio calculations are also performed, demonstrating the efficiency of the FMO method in modeling large open-shell systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom