z-logo
open-access-imgOpen Access
DFT Models of Molecular Species in Carbonate Molten Salts
Author(s) -
W. Robert Carper,
P. G. Wahlbeck,
Trevor R. Griffiths
Publication year - 2012
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp3016694
Subject(s) - raman spectroscopy , carbonate , chemistry , bent molecular geometry , density functional theory , spectral line , analytical chemistry (journal) , crystallography , thermodynamics , computational chemistry , organic chemistry , physics , astronomy , optics
Raman spectra of high temperature carbonate melts are correlated with carbonate species modeled at 923 K using B3LYP/(6-311+G(2d,p)) density functional calculations. Species that are theoretically stable at 923 K include O(2-), O(2)(-), O(2)(2-), CO(3)(2-), C(2)O(6)(2-), CO(4)(-), CO(4)(2-), CO(4)(4-), CO(5)(2-), KCO(4)(-), LiCO(4)(-), KO(2)(-), LiO(2)(-), NaO(2)(-), KO(2), LiO(2), NaO(2), KCO(3)(-), LiCO(3)(-), and NaCO(3)(-). Triangular, linear, and bent forms are theoretically possible for KO(2)(-) and NaO(2)(-). Triangular and linear forms may exist for LiO(2)(-). Linear and triangular versions are theoretically possible for LiO(2)(-) and KO(2). A triangular version of NaO(2) may exist. The correlation between measured and theoretical Raman spectra indicate that monovalent cations are to be included in several of the species that produce Raman spectra.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom