z-logo
open-access-imgOpen Access
Enhancing P3HT/TiO2 Hybrid Photovoltaic Performance by Incorporating High Surface Potential Silica Nanodots into Hole Transport Layer
Author(s) -
Jhih-Fong Lin,
Wei-Ben Wang,
ChunChih Ho,
JwoHuei Jou,
YangFang Chen,
WeiFang Su
Publication year - 2011
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/jp208210s
Subject(s) - pedot:pss , materials science , nanodot , chemical engineering , layer (electronics) , phase (matter) , optoelectronics , sheet resistance , nanotechnology , chemistry , organic chemistry , engineering
We offer a novel approach to improve the performance of P3HT/TiO2 hybrid photovoltaic devices by incorporating either hydroxyl- or amino-functionalized silica nanodots (SND–OH or SND–NH2) into the hole transport layer of the PEDOT:PSS. The SNDs serve as screens between conducting polymer and ionomer PSS to improve the phase separation and charge transport of the PEDOT:PSS hole transport layer. The power conversion efficiency (PCE) was thus improved by 1.45 and 2.61 fold for devices fabricated with PEDOT:PSS containing 1 wt % of SND–OH (SND–OH device) and 1 wt % of SND–NH2 (SND–NH2 device), respectively, when compared with the devices fabricated by neat PEDOT:PSS. The increase in PCE arises from an increase in short circuit currents, which are affected by the phase separation of PEDOT:PSS with possessing incorporated SNDs. The low surface potential of hydroxyl-functionalized SNDs (SND–OH) is easily aggregated in the PEDOT:PSS solution and forms large-sized phase separation in the PEDOT:PSS film. The aggreg...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom