Autocatalytic Reaction in Hydrolysis of Difructose Anhydride III
Author(s) -
Tzu-Hsin Chan,
PoTuan Chen,
Hsuan-Hau Chang,
MingYu Lai,
Michitoshi Hayashi,
Juen-Kai Wang,
YuhLin Wang
Publication year - 2011
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/jp206494r
Subject(s) - autocatalysis , chemistry , hydrolysis , catalysis , cellobiose , organic chemistry , reaction rate , hydrolysis constant , reaction mechanism , monosaccharide , inorganic chemistry , kinetics , reaction rate constant , cellulase , physics , quantum mechanics
Hydrolysis of several polysaccharides in neutral and weak acid environment has been shown to exhibit autocatalytic behavior. Because the pH value of the solution decreases during hydrolysis, it has been proposed that proton is the catalyst of the autocatalytic reaction. We monitored the hydrolysis of difructose anhydride III (DFA III) in both strong and weak acid environment using Raman spectroscopy and found that it is also an autocatalytic reaction. Its Raman signatures were analyzed with ab initio method. When the reaction product, fructose, is added in the beginning of the reaction, the speed of hydrolysis increases to a magnitude that cannot be explained by the rate enhancement due to a decrease in the pH value, indicating that proton alone is not an effective catalyst for the reaction. It is the combination of proton and a certain form of reaction product such as monosaccharide or its derivatives that catalyzes the hydrolysis of difructose anhydride III. Similar results are observed in the hydrolysis of cellobiose, suggesting the universality of this autocatalytic reaction. Our findings provide the first clue to a new autocatalytic pathway in the hydrolysis of polysaccharides.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom