z-logo
open-access-imgOpen Access
In Silico Design of New Ionic Liquids Based on Quantitative Structure−Property Relationship Models of Ionic Liquid Viscosity
Author(s) -
Isabelle Billard,
Gilles Marcou,
Ali Ouadi,
Alexandre Varnek
Publication year - 2010
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp107868w
Subject(s) - ionic liquid , quantitative structure–activity relationship , viscosity , in silico , mean squared error , work (physics) , biological system , ionic bonding , thermodynamics , materials science , chemistry , mathematics , organic chemistry , stereochemistry , ion , physics , statistics , biochemistry , biology , gene , catalysis
This work is devoted to establishing a quantitative structure-property relationship (QSPR) between the chemical structure of ionic liquids (ILs) and their viscosity followed by computer-aided design of new ILs possessing desirable viscosity. The modeling was performed using back-propagation artificial neural networks on a set of 99 ILs at 25 °C, covering a large viscosity range from 3 to 800 cP. The ISIDA fragment descriptors were used to encode molecular structures of ILs. These models were first validated on 23 new ILs from Solvionic company and then used to predict the viscosity of three new ILs which then have been synthesized and tested. The models display high predictive performance in external 5-fold cross validation: determination coefficients R(2) > 0.73 and absolute mean root mean square error < 70 cP. For three ILs synthesized and tested in this work, predicted viscosities are in good qualitative agreement with the experimentally measured ones.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom