Photodissociation of Gaseous Acetyl Chloride at 248 nm by Time-Resolved Fourier-Transform Infrared Spectroscopy: The HCl, CO, and CH2 Product Channels
Author(s) -
Yuting Liu,
MingTsang Tsai,
ChiaYun Liu,
PoYu Tsai,
KingChuen Lin,
Y. H. Shih,
Agnes H. H. Chang
Publication year - 2010
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/jp1030653
Subject(s) - photodissociation , dissociation (chemistry) , chemistry , spectroscopy , analytical chemistry (journal) , fourier transform infrared spectroscopy , infrared spectroscopy , infrared , chloride , fourier transform spectroscopy , fragmentation (computing) , ground state , fourier transform , mass spectrometry , photochemistry , atomic physics , organic chemistry , physics , quantum mechanics , chromatography , computer science , optics , operating system , mathematical analysis , mathematics
In one-photon dissociation of gaseous acetyl chloride at 248 nm, time-resolved Fourier-transform infrared emission spectroscopy is used to detect the fragments of HCl, CO, and CH(2) in the presence of Ar or O(2). The high-resolution spectra of HCl and CO are analyzed to yield the corresponding internal energy deposition of 8.9 +/- 1.1 and 6.2 +/- 0.9 kcal/mol. The presence of the CH(2) fragment is verified by detecting the CO(2) product resulting from the reaction of CH(2) and the added O(2). The probability of the HCl formation via a hot Cl reaction with the precursor is examined to be negligible by performing two experiments, the CH(3)COCl pressure dependence and the measurement of Br(2) with Cl reaction. The HCl elimination channel under the Ar addition is verified to be slowed by 2 orders of magnitude, as compared to the Cl elimination channel. The observed fragments are proposed to dissociate on the hot ground electronic state via collision-induced internal conversion. A two-body dissociation channel is favored leading to HCl and CH(2)CO, followed by secondary dissociation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom