Studies of a Lattice Model of Water Confined in a Slit Pore
Author(s) -
J.-C. Liu,
P. A. Monson,
Frank van Swol
Publication year - 2007
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/jp0738309
Subject(s) - monte carlo method , adsorption , metastability , canonical ensemble , desorption , graphite , thermodynamics , lattice (music) , water vapor , grand canonical ensemble , saturation (graph theory) , water model , chemistry , materials science , chemical physics , molecular dynamics , physics , computational chemistry , statistics , mathematics , organic chemistry , combinatorics , acoustics
We describe an extension of the Bell-Salt lattice model of water to the study of water confined in a slit pore. Wall-fluid interactions are chosen to be qualitatively representative of water interacting with a graphite surface. We have calculated the bulk vapor-liquid phase coexistence for the model through direct Monte Carlo simulations of the vapor-liquid interface. Adsorption and desorption isotherms in the slit pore were calculated using grand canonical ensemble Monte Carlo simulations. In addition, the thermodynamic conditions of vapor-liquid equilibrium for the confined fluid were determined. Our results are consistent with recent calculations for off-lattice models of confined water that show metastable vapor states of confined water persisting beyond the bulk saturation conditions, except for the narrowest pores. The results are similarly consistent with recent experiments on water adsorption in graphitized carbon black.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom