z-logo
open-access-imgOpen Access
Formation of Orientation-Ordered Superlattices of Magnetite Magnetic Nanocrystals from Shape-Segregated Self-Assemblies
Author(s) -
Qing Song,
Yong Ding,
Zhong Lin Wang,
Z. John Zhang
Publication year - 2006
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp0652695
Subject(s) - nanocrystal , superlattice , magnetite , materials science , self assembly , van der waals force , nanotechnology , transmission electron microscopy , crystallography , chemical physics , chemistry , molecule , metallurgy , optoelectronics , organic chemistry
Magnetic magnetite (Fe3O4) nanocrystals have been synthesized by combining nonhydrolytic reaction with seed-mediated growth. The shape of these magnetite nanocrystals can be controlled either as pure spheres or a mixture of mainly faceted nanocrystals. Faceted magnetite nanocrystals consist of truncated tetrahedral platelets (TTPs), truncated octahedrons (TOs), and octahedrons (OTs). Transmission electron microscopy analysis indicates that the faceted nanocrystal mixture tends to self-segregate based upon the shape in a self-assembly process, and each shape forms its own distinct crystallographic orientation-ordered superlattice assemblies. Self-assemblies of the Fe3O4 nanocrystals in the shapes of TTP, TO, and OT show hexagonal, primitive cubic, and distorted body-centered cubic (bcc) superlattice structures, respectively. The possible mechanism for the formation of different superstructures is attributed to van der Waals interactions. Nanocrystals with different shapes provide diverse building blocks for bottom-up approaches in building nano- and mesosystems. Furthermore, the self-segregation phenomenon of different shaped nanocrystals in self-assembly processes could be very important in envisioning efficient assembly strategies for nanoscience- and nanotechnology-based devices.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom