Effect of Counterions on the Interactions of Charged Oligothiophenes
Author(s) -
Nicholas Singh-Miller,
Damián A. Scherlis,
Nicola Marzari
Publication year - 2006
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp063478j
Subject(s) - counterion , chemical physics , materials science , chemistry , ion , organic chemistry
The functionality of conjugated polymer systems often relies on oxidations or reductions, in most cases mediated by the presence of counterions. The effect that the common counterion hexafluorophosphate (PF6-) has on the intermolecular interactions between charged oligothiophenes is investigated here using ab initio quantum chemistry methods. Counterions are explicitly included in the simulations of oxidized oligothiophenes and in the dimerization process. Our calculations provide quantitative and qualitative insight into the intermolecular interactions in oligothiophene-counterion systems and show that the intermolecular pi-stacking of oligothiophenes is not adversely affected by the presence of counterions and that in fact oligothiophene dimerization is further stabilized by their presence.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom