z-logo
open-access-imgOpen Access
Structure Effects of Benzene Hydrogenation Studied with Sum Frequency Generation Vibrational Spectroscopy and Kinetics on Pt(111) and Pt(100) Single-Crystal Surfaces
Author(s) -
Kaitlin M. Bratlie,
Christopher J. Kliewer,
Gábor A. Somorjai
Publication year - 2006
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp062623q
Subject(s) - cyclohexene , benzene , cyclohexane , chemistry , single crystal , crystal (programming language) , photochemistry , adsorption , hydrogen , spectroscopy , catalysis , analytical chemistry (journal) , crystallography , organic chemistry , physics , quantum mechanics , computer science , programming language
Sum frequency generation (SFG) surface vibrational spectroscopy and kinetic measurements using gas chromatography have identified at least two reaction pathways for benzene hydrogenation on the Pt(100) and Pt(111) single-crystal surfaces at Torr pressures. Kinetic studies at low temperatures (310-370 K) show that benzene hydrogenation does not proceed through cyclohexene. A Langmuir-Hinshelwood-type rate law for the low-temperature reaction pathway is identified. The rate-determining step for this pathway is the addition of the first hydrogen atom to adsorbed benzene for both single-crystal surfaces, which is verified by the spectroscopic observation of adsorbed benzene at low temperatures on both the Pt(100) and Pt(111) crystal faces. Low-temperature SFG studies reveal chemisorbed and physisorbed benzene on both surfaces. At higher temperatures (370-440 K), hydrogenation of benzene to pi-allyl c-C(6)H(9) is observed only on the Pt(100) surface. Previous single-crystal studies have identified pi-allyl c-C(6)H(9) as the rate-determining step for cyclohexene hydrogenation to cyclohexane.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom