High-Level ab Initio Studies of Hydrogen Abstraction from Prototype Hydrocarbon Systems
Author(s) -
Berhane Temelso,
C. David Sherrill,
Ralph C. Merkle,
Robert A. Freitas
Publication year - 2006
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/jp061821e
Subject(s) - hydrogen atom abstraction , chemistry , ab initio , computational chemistry , perturbation theory (quantum mechanics) , ab initio quantum chemistry methods , hydrogen , radical , electronic correlation , basis set , coupled cluster , density functional theory , molecule , physics , quantum mechanics , organic chemistry
Symmetric and nonsymmetric hydrogen abstraction reactions are studied using state-of-the-art ab initio electronic structure methods. Second-order Møller-Plesset perturbation theory (MP2) and the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] methods with large correlation consistent basis sets (cc-pVXZ, where X = D,T,Q) are used in determining the transition-state geometries, activation barriers, and thermodynamic properties of several representative hydrogen abstraction reactions. The importance of basis set, electron correlation, and choice of zeroth-order reference wave function in the accurate prediction of activation barriers and reaction enthalpies are also investigated. The ethynyl radical (*CCH), which has a very high affinity for hydrogen atoms, is studied as a prototype hydrogen abstraction agent. Our high-level quantum mechanical computations indicate that hydrogen abstraction using the ethynyl radical has an activation energy of less than 3 kcal mol(-1) for hydrogens bonded to an sp(2) or sp(3) carbon. These low activation barriers further corroborate previous studies suggesting that ethynyl-type radicals would make good tooltips for abstracting hydrogens from diamondoid surfaces during mechanosynthesis. Modeling the diamond C(111) surface with isobutane and treating the ethynyl radical as a tooltip, hydrogen abstraction in this reaction is predicted to be barrierless.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom