z-logo
open-access-imgOpen Access
Ultrafast Excited State Dynamics of the Perylene Radical Cation Generated upon Bimolecular Photoinduced Electron Transfer Reaction
Author(s) -
Stéphane Pagès,
Bernhard Lang,
Eric Vauthey
Publication year - 2006
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/jp0615252
Subject(s) - chemistry , excited state , electron transfer , ion , perylene , photochemistry , photoinduced electron transfer , ground state , photoinduced charge separation , quantum yield , yield (engineering) , reaction rate constant , acceptor , spectroscopy , chemical physics , atomic physics , kinetics , materials science , molecule , fluorescence , physics , organic chemistry , photocatalysis , quantum mechanics , artificial photosynthesis , metallurgy , condensed matter physics , catalysis
The ultrafast ground state recovery (GSR) dynamics of the radical cation of perylene, Pe(*+), generated upon bimolecular photoinduced electron transfer in acetonitrile, has been investigated using pump-pump-probe spectroscopy. With 1,4-dicyanobenzene as electron acceptor, the free ion yield is substantial and the GSR dynamics of Pe(*+) was found to depend on the time delay between the first and second pump pulses, Deltat(12), i.e., on the "age" of the ion. At short Deltat(12), the GSR dynamics is biphasic, and at Deltat(12) larger than about 500 ps, it becomes exponential with a time constant around 3 ps. With trans-1,2-dicyanoethylene as acceptor, the free ion yield is essentially zero and the GSR dynamics of Pe(*+) remains biphasic independently of Deltat(12). The change of dynamics observed with 1,4-dicyanobenzene is ascribed to the transition from paired to free solvated ion, because in the pair, the excited ion has an additional decay channel to the ground state, i.e., charge recombination followed by charge separation. The rate constants deduced from the analysis of these GSR dynamics are all fully consistent with this hypothesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom