z-logo
open-access-imgOpen Access
Solid-State 25Mg NMR Spectroscopic and Computational Studies of Organic Compounds. Square-Pyramidal Magnesium(II) Ions in Aqua(magnesium) Phthalocyanine and Chlorophyll a
Author(s) -
Alan Wong,
Ramsey Ida,
Xin Mo,
Zhehong Gan,
Jennifer Poh,
Gang Wu
Publication year - 2006
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/jp061350w
Subject(s) - chemistry , quadrupole , basis set , ion , density functional theory , magnesium , nmr spectra database , square pyramidal molecular geometry , analytical chemistry (journal) , molecule , crystallography , computational chemistry , spectral line , atomic physics , physics , organic chemistry , chromatography , astronomy
We report a solid-state (25)Mg NMR spectroscopic study of two magnesium-containing organic compounds: monopyridinated aqua(magnesium) phthalocyanine (MgPc.H(2)O.Py) and chlorophyll a (Chla). Each of these compounds contains a Mg(II) ion coordinating to four nitrogen atoms and a water molecule in a square-pyramidal geometry. Solid-state (25)Mg NMR spectra for MgPc.H(2)O.Py were obtained at 11.7 T (500 MHz for (1)H) for a (25)Mg-enriched sample (99.1% (25)Mg atom) using both Hahn-echo and quadrupole Carr-Purcell Meiboom-Gill (QCPMG) pulse sequences. Solid-state (25)Mg NMR spectra for Chla were recorded at (25)Mg natural abundance (10.1%) at 19.6 T (830 MHz for (1)H). The (25)Mg quadrupole parameters were determined from spectral analyses: MgPc.H(2)O.Py, C(Q) = 13.0 +/- 0.1 MHz and eta(Q) = 0.00 +/- 0.05; Chla, C(Q) = 12.9 +/- 0.1 MHz and eta(Q) = 1.00 +/- 0.05. This work represents the first time that Mg(II) ions in a square-pyramidal geometry have been characterized by solid-state (25)Mg NMR spectroscopy. Extensive quantum mechanical calculations for electric-field-gradient (EFG) and chemical shielding tensors were performed at restricted Hartee-Fock (RHF), density functional theory (DFT), and second-order Møller-Plesset perturbation theory (MP2) levels for both compounds. Computed (25)Mg nuclear quadrupole coupling constants at the RHF and MP2 levels show a reasonable basis-set convergence at the cc-pV5Z basis set (within 7% of the experimental value); however, B3LYP results display a drastic divergence beyond the cc-pVTZ basis set. A new crystal structure for MgPc.H(2)O.Py is also reported.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom