z-logo
open-access-imgOpen Access
Electronic Structure Studies of Tetrazolium-Based Ionic Liquids
Author(s) -
Deborah Zorn,
Jerry A. Boatz,
Mark S. Gordon
Publication year - 2006
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp060854r
Subject(s) - isodesmic reaction , density functional theory , chemistry , ionic liquid , ionic bonding , ion , substituent , computational chemistry , inorganic chemistry , organic chemistry , catalysis
New energetic ionic liquids are investigated as potential high energy density materials. Ionic liquids are composed of large, charge-diffuse cations, coupled with various (usually oxygen containing) anions. In this work, calculations have been performed on the tetrazolium cation with a variety of substituents. Density functional theory (DFT) with the B3LYP functional, using the 6-311G(d,p) basis set was used to optimize geometries. Improved treatment of dynamic electron correlation was obtained using second-order perturbation theory (MP2). Heats of formation of the cation with different substituent groups were calculated using isodesmic reactions and Gaussian-2 calculations on the reactants. The cation was paired with oxygen rich anions ClO4-, NO3-, or N(NO2)2- and those structures were optimized using both DFT and MP2. The reaction pathway for proton transfer from the cation to the anion was investigated.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom