z-logo
open-access-imgOpen Access
Anomalous Ionic Conductivity Increase in Li2S + GeS2 + GeO2 Glasses
Author(s) -
Youngsik Kim,
Jason Saienga,
Steve W. Martin
Publication year - 2006
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp060670c
Subject(s) - ionic conductivity , materials science , conductivity , mineralogy , ionic bonding , physics , geology , ion , chemistry , electrode , electrolyte , quantum mechanics
Numerous studies of the ionic conductivities in oxide-doped chalcogenaide glasses have shown the anomalous result that the ionic conductivity actually increases significantly (by more than a factor of 10 in some cases) by the initial addition of an oxide phase to a pure sulfide glass. After this initial sharp increase, the conductivity then monotonically decreases with further oxide addition. While this behavior is important to the application of these glasses for Li batteries, no definitive understanding of this behavior has been elucidated. To examine this effect further and more completely, the ionic conductivities of 0.5Li(2)S + 0.5[(1 - x)GeS(2) + xGeO(2)] glasses have been measured on disc-type bulk glasses. The ionic conductivity of the 0.5Li(2)S + 0.5GeS(2) (x = 0) glass was observed to increase from 4.3 x 10(-5) (Omega cm)(-1) to 1.5 x 10(-4) (Omega cm)(-1) while the activation energy decreased to 0.358 eV from 0.385 eV by the addition of 5 mol % of GeO(2). Further addition of GeO(2) monotonically decreased the conductivity and increased the activation energy. On the basis of our previous studies of the structure of this glass system, the Anderson and Stuart model was applied to explain the decrease in the activation energy and increase in the conductivity. It is suggested that the "doorway" radius between adjacent cation sites increases slightly (from approximately 0.29(+/-0.05) A to approximately 0.40(+/-0.05) A) with the addition of oxygen to the glass and is proposed to be the major cause in decreasing the activation energy and thereby increasing the conductivity. Further addition of oxides appears to contract the glass structure (and the doorway radius) leading to an increase in the conductivity activation energy and a decrease in the conductivity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom