Synthesis of Thermally Stable Zirconia-Based Mesoporous Materials via a Facile Post-treatment
Author(s) -
ShihYuan Chen,
LingYun Jang,
Soofin Cheng
Publication year - 2006
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp060564a
Subject(s) - mesoporous material , calcination , cubic zirconia , materials science , zirconium , chemical engineering , mesoporous organosilica , inorganic chemistry , mesoporous silica , chemistry , organic chemistry , composite material , catalysis , ceramic , metallurgy , engineering
A novel method of preparing thermally stable zirconia-based mesoporous materials was developed. The zirconia-based mesoporous materials of 2D-hexagonal structure were prepared using zirconium sulfate as the zirconium precursor and cetyltrimethylammonium (CTMA) as the pore-directing agent with the aid of salt in the synthesis solution to reduce the sulfate content in the final product and significantly improve the crystallographic ordering. Post-treatment of the mesoporous material with NaCl solution and lowering the ramping rate to less than 0.2 degrees C/min during the calcination process, however, were the key steps to hinder the growth of the dense zirconia phase and to retain the ordered mesostructure up to 600 degrees C. It was found that a portion of the surfactant (8.9-17.4 wt %) and sulfate ions (0.5-1.2 wt %) were removed during the post-treatment, which prevented the remaining sulfate groups from being reduced by the hydrogen-rich surfactant during the calcination process as confirmed by sulfur K-edge X-ray absorption near edge structure (XANES) and infrared spectroscopy. The maintenance of sulfur in the sulfate state seemed to be important in stabilizing the mesoporous structure of zirconia materials. The mesoporous zirconia materials after extraction with NaCl solution three times and calcination at 550-600 degrees C had the composition ZrO(2-x)(SO4)x with x = 0.10-0.27. The material possesses high surface area (approximately 200 m2/g), large pore volume (approximately 0.10 cm3/g), and wormlike mesopores. In comparison with the mesoporous zirconia materials stabilized by chemical treatment, the present route was simpler and more environmentally friendly and resulted in mesoporous zirconia materials of better thermal stability.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom