z-logo
open-access-imgOpen Access
Structure of Mercaptobiphenyl Monolayers on Mercury
Author(s) -
L. Tamam,
H. Kraack,
Eli Sloutskin,
B. M. Ocko,
P. S. Pershan,
Abraham Ulman,
Moshe Deutsch
Publication year - 2005
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp050278j
Subject(s) - monolayer , molecule , crystallography , chemistry , diffraction , materials science , optics , physics , organic chemistry , biochemistry
The molecular-scale structure and phase behavior of single-component Langmuir films of 4'-methyl-4-mercaptobiphenyl (MMB) and 4'-perfluoromethyl-4-mercaptobiphenyl (FMMB) on mercury were studied using surface tensiometry, grazing incidence X-ray diffraction, and X-ray reflectivity. At low coverages, a condensed but in-plane disordered single layer of surface-parallel molecules is found for both compounds. At high coverages, both compounds exhibit in-plane-ordered phases of standing-up molecules. For MMB, the biphenyl core dominates the structure, yielding a centered-rectangular unit cell with an area A(x) of 21.8 A(2)/molecule, with molecules tilted by approximately 14 degrees from the surface normal in the nearest-neighbor direction, and a coherence length xi of >1000 A for the crystalline domains. For FMMB, the perfluoromethyl group dominates the structure, yielding a hexagonal unit cell with untilted molecules, an area A(x) of 24.2 A(2)/molecule, and a much smaller xi of approximately 110 A. The structure is discussed in comparison with self-assembled monolayers of MMB on crystalline Au(111) and similar-length alkanethiolate SAMs on Au(111) and on mercury. The differences in the structure are discussed and traced to the differences in the substrate's surface structure, and in the molecular cross section and rigidity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom