z-logo
open-access-imgOpen Access
Ultrafast to Slow Orientational Dynamics of a Homeotropically Aligned Nematic Liquid Crystal
Author(s) -
Jie Li,
Irène Wang,
M. D. Fayer
Publication year - 2004
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp045958l
Subject(s) - liquid crystal , power law , condensed matter physics , isotropy , inflection point , phase (matter) , kerr effect , exponent , optics , materials science , law , physics , nonlinear system , quantum mechanics , statistics , geometry , mathematics , political science , linguistics , philosophy
The orientational dynamics of a homeotropically aligned nematic liquid crystal, 4'-pentyl-4-biphenylcarbonitrile (5-CB), is studied over more than six decades of time (500 fs to 2 mus) using optical heterodyne detected optical Kerr effect experiments. In contrast to the dynamics of nematogens in the isotropic phase, the data do not decay as a highly temperature-dependent exponential on the longest time scale, but rather, a temperature-independent power law spanning more than two decades of time, the final power law, is observed. On short time scales (approximately 3 ps to approximately 1 ns) another power law, the intermediate power law, is observed that is temperature dependent. The power law exponent of the correlation function associated with the intermediate power law displays a linear dependence on the change in the nematic order parameter with temperature. Between the intermediate power law and the final power law, there is a crossover region that displays an inflection point. The temperature-dependent orientational dynamics in the nematic phase are shown to be very different than those observed in the isotropic phase.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom