Quantum Chemical Studies of Mononuclear Zinc Species of Hydration and Hydrolysis
Author(s) -
Mengqiang Zhu,
Gang Pan
Publication year - 2005
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/jp045560p
Subject(s) - zinc , quantum chemical , peripheral blood mononuclear cell , hydrolysis , chemistry , zinc compounds , biochemistry , organic chemistry , molecule , in vitro
Optimal geometries, charge distributions, bond analysis, changes of Gibbs free energy, entropies and enthalpies of hydration, and hydrolysis reactions for mononuclear species of Zn(2+) including hydrated and hydrolysis complexes were investigated using quantum chemical calculations in the gas phase. Optimized geometrical structures showed that the stable hydrated and hydrolysis zinc species without outer-sphere water molecules were Zn(H(2)O)(6)(2+), Zn(OH)(H(2)O)(3)(+), Zn(OH)(2)(H(2)O)(2), Zn(OH)(3)(-), and Zn(OH)(4)(2-). Results of NPA (Natural Population Analysis) indicated that the charge on the Zn atom of the hydrated ions decreased but the charge on the zinc atom of the hydrolysis species increased with the increase of inner-sphere water molecules. NBO (Natural Bond Orbital) analyses demonstrated that hydrated and hydrolysis species of zinc were mainly electrostatic bonding compounds. Calculations of reaction energies indicated that inner-sphere water molecules became more unfavorable as the hydrolysis increased. Stepwise hydrolysis equilibrium constants decreased successively and the order remained unchanged when the inner-sphere dehydration occurred.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom