z-logo
open-access-imgOpen Access
CO2 Splitting by H2O to CO and O2 under UV Light in TiMCM-41 Silicate Sieve
Author(s) -
Wenyong Lin,
Hongxian Han,
Heinz Frei
Publication year - 2004
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp040345u
Subject(s) - photodissociation , carbon monoxide , molecular sieve , silicate , analytical chemistry (journal) , chemistry , spectroscopy , infrared spectroscopy , infrared , electron transfer , photochemistry , catalysis , adsorption , physics , biochemistry , organic chemistry , chromatography , quantum mechanics , optics
The 266 nm light-induced reaction of CO{sub 2} and H{sub 2}O gas mixtures (including isotopic modifications {sup 13}CO{sub 2}, C{sup 18}O{sub 2}, and D{sub 2}O) in framework TiMCM-41 silicate sieve was monitored by in-situ FT-IR spectroscopy at room temperature. Carbon monoxide gas was observed as the sole product by infrared, and the growth was found to depend linearly on the photolysis laser power. H{sub 2}O was confirmed as stoichiometric electron donor. The work establishes CO as the single photon, 2-electron transfer product of CO{sub 2} photoreduction by H{sub 2}O at framework Ti centers for the first time. O{sub 2} was detected as co-product by mass spectrometric analysis of the photolysis gas mixture. These results are explained by single UV photon-induced splitting of CO{sub 2} by H{sub 2}O to CO and surface OH radical

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom