z-logo
open-access-imgOpen Access
Infrared Photodissociation Spectroscopy of [Aniline−(Water)n]+ (n = 1−8): Structural Change from Branched and Cyclic to Proton-Transferred Forms
Author(s) -
Yoshiya Inokuchi,
Kazuhiko Ohashi,
Yoshiki Honkawa,
Norifumi Yamamoto,
Hiroshi Sekiya,
Nobuyuki Nishi
Publication year - 2003
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/jp0225525
Subject(s) - chemistry , molecule , ion , infrared spectroscopy , photodissociation , hydrogen bond , crystallography , acceptor , spectral line , infrared , spectroscopy , ring (chemistry) , photochemistry , physics , organic chemistry , quantum mechanics , astronomy , optics , condensed matter physics
Infrared photodissociation spectra of [aniline−(H2O)n]+ (n = 1−8) are measured in the 2700−3800 cm-1 region. The spectra are interpreted with the aid of density functional theory calculations. The n = 1 ion has an N−H···O hydrogen bond. The spectrum of the n = 2 ion demonstrates a large perturbation to both of the NH oscillators, indicating the 1−1 structure where each NH bond is bound to a water molecule. For the n = 3 ion, the calculated spectrum of the 2−1 branched structure coincides well with the observed one. For the n = 4 ion, there exist three strong bands at 2960, 3100, and 3430 cm-1, as well as a very weak one at 3550 cm-1. The observed spectrum in the 3600−3800 cm-1 region is decomposed into four bands centered at 3640, 3698, 3710, and 3734 cm-1. The 2−2 branched isomer is responsible for all the features except the 3550 and 3710 cm-1 bands. These two bands are due to another isomer with a five-membered ring. An infrared band characteristic of the n = 5 ion appears at 3684 cm-1, which is not se...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom