z-logo
open-access-imgOpen Access
Synthesis and Reactivity of 4′-Deoxypentenosyl Disaccharides
Author(s) -
Panuwat Padungros,
Renhua Fan,
Matthew D. Casselman,
Gang Cheng,
Hari R. Khatri,
Alexander Wei
Publication year - 2014
Publication title -
the journal of organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.2
H-Index - 228
eISSN - 1520-6904
pISSN - 0022-3263
DOI - 10.1021/jo500449h
Subject(s) - chemistry , synthon , stereochemistry , epoxide , stereoselectivity , disaccharide , regioselectivity , bromide , reactivity (psychology) , oligosaccharide , nucleophile , glycosyl , organic chemistry , catalysis , medicine , alternative medicine , pathology
4-Deoxypentenosides (4-DPs) are versatile synthons for rare or higher-order pyranosides, and they provide an entry for structural diversification at the C5 position. Previous studies have shown that 4-DPs undergo stereocontrolled DMDO oxidation; subsequent epoxide ring-openings with various nucleophiles can proceed with both anti or syn selectivity. Here, we report the synthesis of α- and β-linked 4'-deoxypentenosyl (4'-DP) disaccharides, and we investigate their post-glycosylational C5' additions using the DMDO oxidation/ring-opening sequence. The α-linked 4'-DP disaccharides were synthesized by coupling thiophenyl 4-DP donors with glycosyl acceptors using BSP/Tf2O activation, whereas β-linked 4'-DP disaccharides were generated by the decarboxylative elimination of glucuronyl disaccharides under microwave conditions. Both α- and β-linked 4'-DP disaccharides could be epoxidized with high stereoselectivity using DMDO. In some cases, the α-epoxypentenosides could be successfully converted into terminal l-iduronic acids via the syn addition of 2-furylzinc bromide. These studies support a novel approach to oligosaccharide synthesis, in which the stereochemical configuration of the terminal 4'-DP unit is established at a post-glycosylative stage.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom