z-logo
open-access-imgOpen Access
Synthesis and Photophysical Properties of Biphenyl and Terphenyl Arylene–Ethynylene Macrocycles
Author(s) -
Andrew L. Korich,
Ian A. McBee,
Jonathan C. Bennion,
Jenna I. Gifford,
Thomas Smart Hughes
Publication year - 2014
Publication title -
the journal of organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.2
H-Index - 228
eISSN - 1520-6904
pISSN - 0022-3263
DOI - 10.1021/jo4023809
Subject(s) - arylene , terphenyl , biphenyl , planarity testing , tetramer , dimer , catenation , carbazole , chemistry , materials science , crystallography , photochemistry , organic chemistry , alkyl , enzyme , aryl , dna , biochemistry
A series of single-walled carbon nanotube precursors, C3h-symmetric cyclotri(ethynylene)(biphenyl-2,4'-diyl) and cyclotri(ethynylene)(p-terphenyl-2,4″-diyl), have been prepared by a linear stepwise oligomerization-cyclization route and by statistical intermolecular cyclooligomerization. In addition to producing these members of a novel class of arylene ethynylene macrocycles, 1 and 2, the latter statistical process produces the smaller cyclic dimer, cyclodi(ethynylene)(p-terphenyl-2,4″-diyl) and the larger cyclic tetramer cyclotetra(ethynylene)(biphenyl-2,4'-diyl). These macrocycles display large Stokes shifts in their fluorescence spectra. Their biphenyl or terphenyl connectivity prevents these macrocycles from achieving full planarity in the ground state, and the ethynylene moieties could provide synthetic access to cyclic arylene oligomers and discrete carbon nanotube segments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom