z-logo
open-access-imgOpen Access
Unravelling the Reaction Mechanism of the Reductive Ring Contraction of 1,2-Pyridazines
Author(s) -
Pedro J. Silva
Publication year - 2012
Publication title -
the journal of organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.2
H-Index - 228
eISSN - 1520-6904
pISSN - 0022-3263
DOI - 10.1021/jo300448d
Subject(s) - chemistry , pyridazine , ring (chemistry) , contraction (grammar) , disproportionation , reaction mechanism , density functional theory , computational chemistry , photochemistry , medicinal chemistry , stereochemistry , organic chemistry , catalysis , medicine
Substituted pyrroles may be synthesized from selected 1,2-pyridazines through a reductive ring contraction involving the addition of four electrons and four protons. Our density functional theory computations of this reaction mechanism show that the first reduction event must be preceded by the uptake of one proton by 1,2-pyridazine and that the reaction proceeds through a 2e(-)/3H(+)-bearing intermediate. In the absence of electron-withdrawing groups able to resonate charge away from the ring, this intermediate lies too high in energy, making the reaction sequence thermodynamically inaccessible. After another two-electron reduction and the addition of two more protons, the original 1,2-pyridazine ring opens. Ring contraction and ammonia elimination then proceed with very small barriers, irrespective of the substituents present in the original 1,2-pyridazine. By establishing the need for electron-withdrawing resonant groups in the 3- and 6-positions to stabilize the critical intermediate in the initial stages of the reaction, this work suggests that the scope of the reductive ring contraction of 1,2-pyridazines may be expanded to pyridazines bearing COCH(3) groups, amides or aryls in these positions. We also explain the lack of reactivity of unsubstituted 1,2-pyridazine and analyze the feasibility of bypassing the high energy 2e(-)/3H(+)-intermediate through disproportionation of earlier 2e(-)/2H(+)-bearing intermediates.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom