Biased Multicomponent Reactions to Develop Novel Bromodomain Inhibitors
Author(s) -
Michael R. McKeown,
Daniel L. Shaw,
Harry Fu,
Shuai Liu,
Xiang Xu,
Jason Marineau,
Yibo Huang,
Xiaofeng Zhang,
Dennis L. Buckley,
Asha Kadam,
Zijuan Zhang,
Stephen C. Blacklow,
Jun Qi,
Wei Zhang,
James E. Bradner
Publication year - 2014
Publication title -
journal of medicinal chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.01
H-Index - 261
eISSN - 1520-4804
pISSN - 0022-2623
DOI - 10.1021/jm501120z
Subject(s) - bromodomain , brd4 , chemistry , lead compound , epigenetics , drug discovery , structure–activity relationship , combinatorial chemistry , computational biology , stereochemistry , biochemistry , in vitro , gene , biology
BET bromodomain inhibition has contributed new insights into gene regulation and emerged as a promising therapeutic strategy in cancer. Structural analogy of early methyl-triazolo BET inhibitors has prompted a need for structurally dissimilar ligands as probes of bromodomain function. Using fluorous-tagged multicomponent reactions, we developed a focused chemical library of bromodomain inhibitors around a 3,5-dimethylisoxazole biasing element with micromolar biochemical IC50. Iterative synthesis and biochemical assessment allowed optimization of novel BET bromodomain inhibitors based on an imidazo[1,2-a]pyrazine scaffold. Lead compound 32 (UMB-32) binds BRD4 with a Kd of 550 nM and 724 nM cellular potency in BRD4-dependent lines. Additionally, compound 32 shows potency against TAF1, a bromodomain-containing transcription factor previously unapproached by discovery chemistry. Compound 32 was cocrystallized with BRD4, yielding a 1.56 Å resolution crystal structure. This research showcases new applications of fluorous and multicomponent chemical synthesis for the development of novel epigenetic inhibitors.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom