z-logo
open-access-imgOpen Access
Synthesis and in Vitro Evaluation of BBB Permeability, Tumor Cell Uptake, and Cytotoxicity of a Series of Carboranylporphyrin Conjugates
Author(s) -
N. V. S. Dinesh K. Bhupathiraju,
Xiaoke Hu,
Zehua Zhou,
Frank R. Fronczek,
PierreOlivier Couraud,
Ignacio A. Romero,
Babette Weksler,
M. Graça H. Vicente
Publication year - 2014
Publication title -
journal of medicinal chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.01
H-Index - 261
eISSN - 1520-4804
pISSN - 0022-2623
DOI - 10.1021/jm500786c
Subject(s) - chemistry , cytotoxicity , in vitro , conjugate , cell permeability , permeability (electromagnetism) , tumor cells , pharmacology , biochemistry , stereochemistry , cancer research , membrane , medicine , mathematical analysis , mathematics , biology
A series of tri[(p-carboranylmethylthio)tetrafluorophenyl]porphyrin conjugates of linear and branched polyamines, glucose, arginine, tri(ethylene glycol), and Tyr-D-Arg-Phe-β-Ala (YRFA) peptide were synthesized. These conjugates were investigated for their BBB permeability in human hCMEC/D3 brain endothelial cells, and their cytotoxicity and uptake were assessed using human glioma T98G cells. For comparison purposes, a symmetric tetra[(p-carboranylmethylthio)tetrafluorophenyl]porphyrin was also synthesized, and its crystal structure was obtained. All porphyrin conjugates show low dark cytotoxicity (IC50>400 μM) and low phototoxicity (IC50>100 μM at 1.5 J/cm2) toward T98G cells. All conjugates were efficiently taken up by T98G cells, particularly the cationic polyamine and arginine conjugates, and were localized in multiple cellular organelles, including mitochondria and lysosomes. All compounds showed relatively low in vitro BBB permeability compared with that of lucifer yellow because of their higher molecular weight, hydrophobicity, and tendency for aggregation in solution. Within this series, the branched polyamine and YRFA conjugates showed the highest permeability coefficient, whereas the glucose conjugate showed the lowest permeability coefficient.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom