Saccharin Derivatives as Inhibitors of Interferon-Mediated Inflammation
Author(s) -
Adam Csakai,
Christina Smith,
Emily F. Davis-Marcisak,
Alexander J. Martinko,
Sara K. Coulup,
Hang Yin
Publication year - 2014
Publication title -
journal of medicinal chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.01
H-Index - 261
eISSN - 1520-4804
pISSN - 0022-2623
DOI - 10.1021/jm500409k
Subject(s) - chemistry , lead compound , pharmacology , in vitro , nitric oxide , drug discovery , saccharin , structure–activity relationship , drug , carbamate , interferon , inflammation , stereochemistry , biochemistry , immunology , organic chemistry , biology , endocrinology , medicine
A series of novel, saccharin-based antagonists have been identified for the interferon signaling pathway. Through in vitro high-throughput screening with the Colorado Center for Drug Discovery (C2D2) Pilot Library, we identified hit compound 1, which was the basis for extensive structure-activity relationship studies. Our efforts produced a lead anti-inflammatory compound, tert-butyl N-(furan-2-ylmethyl)-N-{4-[(1,1,3-trioxo-2,3-dihydro-1λ(6),2-benzothiazol-2-yl)methyl]benzoyl}carbamate CU-CPD103 (103), as a potent inhibitor using an established nitric oxide (NO) signaling assay. With further studies of its inhibitory mechanisms, we demonstrated that 103 carries out this inhibition through the JAK/STAT1 pathway, providing a drug-like small molecule inflammation suppressant for possible therapeutic uses.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom