Biodegradable Films from Isolate of Sunflower (Helianthus annuus) Proteins
Author(s) -
Fabiola Ayhllon-Meixueiro,
Carlos VacaGarcía,
Françoise Silvestre
Publication year - 2000
Publication title -
journal of agricultural and food chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.203
H-Index - 297
eISSN - 1520-5118
pISSN - 0021-8561
DOI - 10.1021/jf9907485
Subject(s) - plasticizer , helianthus annuus , ultimate tensile strength , glycerol , dissolution , elongation , sunflower , materials science , ionic bonding , sunflower oil , chemical engineering , chemistry , nuclear chemistry , polymer chemistry , composite material , organic chemistry , food science , horticulture , biology , ion , engineering
The film-forming potential of isolate of sunflower proteins (ISFP) was investigated. Homogeneous films were obtained by dissolution of ISFP in alkaline water (pH 12), addition of a plasticizer, casting, and drying. Maximum protein solubilization and unfolding led to films with the highest elasticity. The effects of five dissolving bases and five plasticizers on the mechanical properties were studied. The use of ionic bases (LiOH, NaOH) capable of interfering with the interproteic noncovalent bonds resulted in the greatest tensile strength (sigma(max)) and elongation at break (epsilon(max)) values (3.9 MPa and 215-251%, respectively). Plasticizers conferred diverse tensile properties to the films: the use of 1,3-propanediol resulted in the highest sigma(max) (27.1 MPa), and glycerol resulted in the greatest epsilon(max) (251%). Different mechanical properties were obtained by using mixtures of these plasticizers.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom