z-logo
open-access-imgOpen Access
In Vitro and in Vivo Metabolite Profiling of Valnemulin Using Ultraperformance Liquid Chromatography–Quadrupole/Time-of-Flight Hybrid Mass Spectrometry
Author(s) -
Shupeng Yang,
WeiMin Shi,
Dingfei Hu,
Suxia Zhang,
Huiyan Zhang,
Zhanhui Wang,
Lin Cheng,
Feifei Sun,
Jianzhong Shen,
Xingyuan Cao
Publication year - 2014
Publication title -
journal of agricultural and food chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.203
H-Index - 297
eISSN - 1520-5118
pISSN - 0021-8561
DOI - 10.1021/jf5012402
Subject(s) - chromatography , quadrupole time of flight , chemistry , metabolite , mass spectrometry , metabolite profiling , in vivo , liquid chromatography–mass spectrometry , in vitro , metabolomics , tandem mass spectrometry , biochemistry , biology , microbiology and biotechnology
Valnemulin, a semisynthetic pleuromutilin derivative related to tiamulin, is broadly used to treat bacterial diseases of animals. Despite its widespread use, metabolism in animals has not yet been fully investigated. To better understand valnemulin biotransformation, in this study, metabolites of valnemulinin in in vitro and in vivo rats, chickens, swines, goats, and cows were identified and elucidated using ultraperformance liquid chromatography-quadrupole/time-of-flight hybrid mass spectrometry (UPLC-Q/TOF-MS). As a result, there were totally 7 metabolites of valnemulin identified in vitro and 75, 61, and 74 metabolites detected in in vivo rats, chickens, and swines, respectively, and the majority of metabolites were reported for the first time. The main metabolic pathways of valnemulin were found to be hydroxylation in the mutilin part (the ring system) and the side chain, oxidization on the sulfur of the side chain to form S-oxides, hydrolysis of the amido bond, and acetylization in the amido of the side chain. In addition, hydroxylation in the mutilin part was proposed to be the primary metabolic route. Furthermore, the results revealed that 2β-hydroxyvalnemulin (V1) and 8α-hydroxyvalnemulin (V2) were the major metabolites for rats and swines and S-oxides (V6) in chickens.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom