z-logo
open-access-imgOpen Access
New Sensitive High-Performance Liquid Chromatography–Tandem Mass Spectrometry Method for the Detection of Horse and Pork in Halal Beef
Author(s) -
Christoph von Bargen,
Jörg Dojahn,
Dietmar Waidelich,
HansUlrich Humpf,
Jens Brockmeyer
Publication year - 2013
Publication title -
journal of agricultural and food chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.203
H-Index - 297
eISSN - 1520-5118
pISSN - 0021-8561
DOI - 10.1021/jf404121b
Subject(s) - chromatography , chemistry , food science , mass spectrometry , tandem mass spectrometry , shotgun , liquid chromatography–mass spectrometry , selected reaction monitoring , detection limit , biomarker , biochemistry , gene
The accidental or fraudulent blending of meat from different species is a highly relevant aspect for food product quality control, especially for consumers with ethical concerns against species, such as horse or pork. In this study, we present a sensitive mass spectrometrical approach for the detection of trace contaminations of horse meat and pork and demonstrate the specificity of the identified biomarker peptides against chicken, lamb, and beef. Biomarker peptides were identified by a shotgun proteomic approach using tryptic digests of protein extracts and were verified by the analysis of 21 different meat samples from the 5 species included in this study. For the most sensitive peptides, a multiple reaction monitoring (MRM) method was developed that allows for the detection of 0.55% horse or pork in a beef matrix. To enhance sensitivity, we applied MRM(3) experiments and were able to detect down to 0.13% pork contamination in beef. To the best of our knowledge, we present here the first rapid and sensitive mass spectrometrical method for the detection of horse and pork by use of MRM and MRM(3).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom