Detection of Gliadin in Foods Using a Quartz Crystal Microbalance Biosensor That Incorporates Gold Nanoparticles
Author(s) -
Pei-Tzu Chu,
ChihSheng Lin,
Wei-Jung Chen,
Chih-Feng Chen,
HsiaoWei Wen
Publication year - 2012
Publication title -
journal of agricultural and food chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.203
H-Index - 297
eISSN - 1520-5118
pISSN - 0021-8561
DOI - 10.1021/jf2047866
Subject(s) - quartz crystal microbalance , gliadin , glutaraldehyde , detection limit , colloidal gold , electrode , chemistry , biosensor , chromatography , nanoparticle , materials science , adsorption , nanotechnology , organic chemistry , biochemistry , gluten
This work develops a label-free gliadin immunosensor that is based on changes in the frequency of a quartz crystal microbalance (QCM) chip. A higher sensitivity was obtained by applying 25 nm gold nanoparticles (AuNPs) to the surface of a bare QCM electrode. Subsequently, chicken anti-gliadin antibodies (IgY) were immobilized directly on the AuNP-modified surface by cross-linking amine groups in IgY with glutaraldehyde. Experimental results revealed that the change in frequency exhibited when 2 ppm gliadin was bound to the AuNP-modified electrode was 35 Hz (48%) greater than that of the bare gold electrode. The linear dynamic range in 60% ethanol was from 1 × 10(1) to 2 × 10(5) ppb gliadin, and the calculated limit of detection (LOD) was 8 ppb. The entire detection process was completed in 40 min and was highly repeatable. Additionally, the AuNP-modified QCM system generated results in the detection of gliadin in 10 commercial food products that were consistent with those obtained using an AOAC-approved gliadin kit. In conclusion, the QCM platform provides a potential alternative means of ensuring that people with wheat allergies and celiac patients have access to gliadin-free food.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom