Protective Effect of Monascus-Fermented Red Mold Rice against Alcoholic Liver Disease by Attenuating Oxidative Stress and Inflammatory Response
Author(s) -
Chin-fu Cheng,
TzuMing Pan
Publication year - 2011
Publication title -
journal of agricultural and food chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.203
H-Index - 297
eISSN - 1520-5118
pISSN - 0021-8561
DOI - 10.1021/jf202577t
Subject(s) - monascus purpureus , oxidative stress , steatosis , monascus , antioxidant , alcoholic liver disease , in vivo , triglyceride , alanine transaminase , fatty liver , biology , chemistry , fermentation , pharmacology , food science , medicine , biochemistry , endocrinology , cholesterol , disease , microbiology and biotechnology , cirrhosis
Monascus purpureus NTU 568 fermented rice is reported to exhibit a wide variety of biological effects, including antitumor, antihypertriglyceridemia, antioxidant, and anti-inflammatory activities. However, its role in the pathogenesis of alcoholic liver disease remains obscure. In this study, the hepatoprotective effects of Monascus-fermented red mold rice (RMR) was evaluated in vivo using chronic alcohol-induced mice as an experimental model. The alcohol-induced mice were orally treated with RMR at 307.5 mg/kg (1-fold), 615 mg/kg (2-fold), and 1537.5 mg/kg (5-fold) for 5 weeks, whereas controls received vehicle only. Treatment with RMR significantly attenuated the increased level of serum transaminases (aspartate aminotransferase and alanine aminotransferase) and hepatic triglyceride and total cholesterol accumulation. Furthermore, RMR elevates hepatic antioxidant ability that reduced hepatic cell damage (steatosis) and decreased tissue inflammatory cytokine levels. These findings suggest that Monascus-fermented RMR may represent a novel, protective strategy against alcoholic liver disease by attenuating oxidative stress, inflammatory response, and steatosis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom