Inhibitory Effects of Dioscorea Polysaccharide on TNF-α-Induced Insulin Resistance in Mouse FL83B Cells
Author(s) -
Bao-Hong Lee,
Wei-Hsuan Hsu,
TzuMing Pan
Publication year - 2011
Publication title -
journal of agricultural and food chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.203
H-Index - 297
eISSN - 1520-5118
pISSN - 0021-8561
DOI - 10.1021/jf200651c
Subject(s) - glut2 , insulin resistance , insulin , tumor necrosis factor alpha , insulin receptor , medicine , endocrinology , insulin receptor substrate , protein kinase b , glucose transporter , glucose uptake , chemistry , biology , phosphorylation , biochemistry
Dioscorea is a traditional medicinal food in Asia. This study investigated the anti-insulin resistance of dioscorea polysaccharide (DPS) in inflammatory factor (tumor necrosis factor-α; TNF-α) induced mouse normal liver FL83B cells. Insulin resistance was induced by treating cells with TNF-α (20 ng/mL) for 5 h; subsequently, the medium was replaced with insulin and DPS for 60 min of incubation (model 1; alleviating group). In addition, cells were cotreated with TNF-α and DPS for 5 h in model 2 (preventing group). DPS effectively increased glucose uptake and glucose transporter 2 (GLUT2) expression of insulin-resistant cells. Furthermore, DPS stimulated insulin receptor substrate (IRS) tyrosyl phosphorylation and increased p-Akt level to alleviate insulin resistance in models 1 and 2. Finally, the possible mechanism of DPS promoting insulin sensitivity in TNF-α-induced FL83B cells was investigated in this study. DPS may attenuate c-Jun N-terminal kinases (JNK) and insulin resistance caused by TNF-α induction; therefore, DPS also elevated the levels of p-IRS(Tyr) and p-Akt(Ser) to improve insulin sensitivity in the TNF-α-induced FL83B cells.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom