Proteome Changes in Caco-2 Cells Treated with Monascus-Fermented Red Mold Rice Extract
Author(s) -
WunYuan Lin,
Wei-Yi Hsu,
Chih-Hsuan Hish,
TzuMing Pan
Publication year - 2007
Publication title -
journal of agricultural and food chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.203
H-Index - 297
eISSN - 1520-5118
pISSN - 0021-8561
DOI - 10.1021/jf072197l
Subject(s) - monascus , fermentation , red yeast rice , food science , chemistry , proteome , pigment , heat shock protein , biochemistry , organic chemistry , gene
Monascus-fermented red mold rice has been extensively used as a folk medicine for thousands of years. Monascus secondary metabolites, including monacolin K, monascorubrin, and ankaflavin, have been reported to have an antiproliferative effect on cancer cells. However, the cell machinery responsible for the antiproliferation of Monascus-fermented red mold rice treatment in cancer cells remains unclear. A proteomic approach using two-dimensional gel electrophoresis, matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry, and tandem mass spectrometry was used to identify proteins with modified expression in Caco-2 cells treated with Monascus-fermented red mold rice extract. A total of 20 proteins were identified with significantly altered expression (P < 0.05) in response to Monascus-fermented red mold rice extract treatment. The deregulated proteins that were identified included heat shock protein 70, protein kinase C epsilon type, clusterin-associated protein 1, and two tumor suppressors (N-chimaerin and calponin-2). Our results suggested the involvement of heat shock protein 70-mediated cytotoxicity in the Caco-2 cells treated with Monascus-fermented red mold rice extract.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom