z-logo
open-access-imgOpen Access
Speed of Sound in (Carbon Dioxide + Propane) and Derived Sound Speed of Pure Carbon Dioxide at Temperatures between (248 and 373) K and at Pressures up to 200 MPa
Author(s) -
ChihWei Lin,
J. P. Martin Trusler
Publication year - 2014
Publication title -
journal of chemical and engineering data
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 132
eISSN - 1520-5134
pISSN - 0021-9568
DOI - 10.1021/je5007407
Subject(s) - speed of sound , carbon dioxide , chemistry , extrapolation , propane , equation of state , thermodynamics , sound pressure , absorption (acoustics) , analytical chemistry (journal) , acoustics , physics , environmental chemistry , organic chemistry , mathematical analysis , mathematics
The speed of sound in (carbon dioxide + propane) mixtures, with mole fractions of carbon dioxide between 0.938 and 0.998, has been measured at temperatures from (248 to 373) K and at pressures between (8 and 200) MPa. We find that the addition of propane to carbon dioxide is highly effective in catalyzing vibration-translation energy transfer and reduces the sound absorption coefficient sufficiently to permit sensitive measurements of the speed of sound at frequencies in the low-MHz range. In this work, a 2 MHz ultrasonic cell based on the double-path pulse-echo method was used. The cell was calibrated with degassed ultrapure water at T = 298.15 K and p = 1 MPa, making use of the speed of sound computed from the International Association for Properties of Water and Steam equation of state (IAPWS-95). The estimated overall standard relative uncertainty of the speeds of sound measured in this study are 0.035 %. The speed of sound in pure carbon dioxide was obtained by extrapolation of the sound-speed data w...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom