z-logo
open-access-imgOpen Access
Chemo- and Regioselective Synthesis of Acyl-Cyclohexenes by a Tandem Acceptorless Dehydrogenation-[1,5]-Hydride Shift Cascade
Author(s) -
Lewis B. Smith,
Roly J. Armstrong,
Daniel MatheauRaven,
Timothy J. Donohoe
Publication year - 2020
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.9b12296
Subject(s) - chemistry , dehydrogenation , cascade reaction , hydride , catalysis , cyclohexene , regioselectivity , phosphine , ketone , annulation , combinatorial chemistry , cyclohexane , organic chemistry , photochemistry , hydrogen
An atom-economical methodology to access substituted acyl-cyclohexenes from pentamethylacetophenone and 1,5-diols is described. This process is catalyzed by an iridium(I) catalyst in conjunction with a bulky electron rich phosphine ligand (CataCXium A) which favors acceptorless dehydrogenation over conjugate reduction to the corresponding cyclohexane. The reaction produces water and hydrogen gas as the sole byproducts and a wide range of functionalized acyl-cyclohexene products can be synthesized using this method in very high yields. A series of control experiments were carried out, which revealed that the process is initiated by acceptorless dehydrogenation of the diol followed by a redox-neutral cascade process, which is independent of the iridium catalyst. Deuterium labeling studies established that the key step of this cascade involves a novel base-mediated [1,5]-hydride shift. The cyclohexenyl ketone products could readily be cleaved under mildly acidic conditions to access a range of valuable substituted cyclohexene derivatives.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom