z-logo
open-access-imgOpen Access
Re-programming Hydrogel Properties Using a Fuel-Driven Reaction Cycle
Author(s) -
Nishant Singh,
Bruno Lainer,
Georges J. M. Formon,
Serena De Piccoli,
Thomas M. Hermans
Publication year - 2020
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.9b11503
Subject(s) - chemistry , chemical engineering , engineering
Nature uses catalysis as an indispensable tool to control assembly and reaction cycles in vital non-equilibrium supramolecular processes. For instance, enzymatic methionine oxidation regulates actin (dis-)assembly, and catalytic guanosine triphosphate hydrolysis is found in tubulin (dis-)assembly. Here we present a completely artificial reaction cycle which is driven by a chemical fuel that is catalytically obtained from a "pre-fuel". The reaction cycle controls the dis-assembly and re-assembly of a hydrogel, where the rate of pre-fuel turnover dictates the morphology as well as the mechanical properties. By addition of additional fresh aliquots of fuel and removal of waste, the hydrogels can be re-programmed time after time. Overall, we show how catalytic fuel generation can control reaction/assembly kinetics and materials' properties in life-like non-equilibrium systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom