Formamides as Isocyanate Surrogates: A Mechanistically Driven Approach to the Development of Atom-Efficient, Selective Catalytic Syntheses of Ureas, Carbamates, and Heterocycles
Author(s) -
Jeffrey Bruffaerts,
Niklas von Wolff,
Yael DiskinPosner,
Yehoshoa BenDavid,
David Milstein
Publication year - 2019
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.9b08942
Subject(s) - formamides , chemistry , isocyanate , catalysis , combinatorial chemistry , atom economy , organic chemistry , polyurethane
Despite the hazardous nature of isocyanates, they remain key building blocks in bulk and fine chemical synthesis. By surrogating them with less potent and readily available formamide precursors, we herein demonstrate an alternative, mechanistic approach to selectively access a broad range of ureas, carbamates, and heterocycles via ruthenium-based pincer complex catalyzed acceptorless dehydrogenative coupling reactions. The design of these highly atom-efficient procedures was driven by the identification and characterization of the relevant organometallic complexes, uniquely exhibiting the trapping of an isocyanate intermediate. Density functional theory (DFT) calculations further contributed to shed light on the remarkably orchestrated chain of catalytic events, involving metal-ligand cooperation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom